Exercise 83

For the following exercises, for each polynomial, a. find the degree; b. find the zeros, if any; c.
find the y-intercept(s), if any; d. use the leading coefficient to determine the graph's end behavior; and e. determine algebraically whether the polynomial is even, odd, or neither.

$$
f(x)=2 x^{2}-3 x-5
$$

Solution

Part (a)
The degree of the polynomial is 2 because the highest power of x is 2 .

Part (b)

Set $f(x)=0$.

$$
f(x)=2 x^{2}-3 x-5=0
$$

Factor the polynomial.

$$
(2 x-5)(x+1)=0
$$

Use the zero product property.

$$
2 x-5=0 \quad \text { or } \quad x+1=0
$$

Solve each equation for x.

$$
\begin{aligned}
2 x & =5 \quad \text { or } \quad x=-1 \\
x & =\frac{5}{2}
\end{aligned}
$$

Therefore, the zeros are

$$
x=\left\{-1, \frac{5}{2}\right\} .
$$

Part (c)

y-intercepts are the points where the function touches the y-axis, which occurs when $x=0$.

$$
f(0)=2(0)^{2}-3(0)-5=-5
$$

Therefore, there's one y-intercept: $(0,-5)$.

Part (d)

$2 x^{2}$ is the dominant term in the polynomial, so the graph is in the shape of a parabola. Since the coefficient is +2 , it opens upward towards the positive y-axis. The graph of $f(x)$ versus x below illustrates this.

Part (e)

Plug in $-x$ for x in the function.

$$
\begin{aligned}
f(-x) & =2(-x)^{2}-3(-x)-5 \\
& =2 x^{2}+3 x-5
\end{aligned}
$$

Since $f(-x) \neq f(x)$, the function $f(x)$ is not even.
Since $f(-x) \neq-f(x)$, the function $f(x)$ is not odd.

